-
SFB TRR 375 – A04: Integrierte Bauteilüberwachung von hochbelasteten hybriden porösen BauteilenDas übergeordnete wissenschaftliche Ziel des SFB TRR 375 ist die Etablierung einer neuen Klasse von Werkstoffen: multifunktionale Hochleistungsbauteile aus hybriden porösen Materialien (HyPo). Diese HyPo-Bauteile werden die Energieeffizienz und Leistungsfähigkeit einer Vielzahl von Produkten verbessern, die Produktsicherheit durch bauteilintegrierte Sensorik gewährleisten und die Datenerfassung im Rahmen der Digitalisierung erleichtern. Die Herausforderungen bestehen in dem Gradienten der Materialeigenschaften, der Stabilität von Hochtemperatursensoren und dem komplexen Zusammenspiel von Eigenspannungszustand, Relaxations- und Ermüdungsverhalten. Das IMPT arbeitet in diesem Zusammenhang in Teilprojekt A04 an bauteilintegrierten polymerfreien Dünnfilmsensoren, die zur Datenerfassung während der Herstellungs- und Nutzungsphase genutzt werden.Jahr: 2024Förderung: DFGLaufzeit: 2024 - 2027
-
SELFLEDDie Untersuchung von Einzelzellen in synthetischen Mikroumgebungen kann enorme Aussagekraft über Zelleigenschaften, Zellinteraktionen und die Wechselwirkungen mit Wirkstoffen haben. Der große zeitliche, personelle und materielle Aufwand schränkt solche Untersuchungen in aller Regel auf den Maßstab von Mikrotiterplatten ein, d.h. Platten mit typischerweise 96 und bis zu 1536 Mikronäpfchen. Die Fluoreszenzmikroskopie wird hier als wesentliches Analysewerkzeug eingesetzt. Dabei werden die Zellen mit Fluorophoren eingefärbt, die bei Bestrahlung mit bestimmten Wellenlängen fluoreszieren. Die ständige Bestrahlung der Zellen führt jedoch zu Photobleichung und photooxidativem Stress und damit zu verfälschten Versuchsergebnissen durch degradierender Fluoreszenz und verringerter Viabilität der Zellen. Das Ziel des Forschungsvorhabens SELFLED ist eine neuartige Beleuchtungseinheit für die Fluoreszenzmikroskopie zu entwickeln, die eine kontrollierte, selektive und überwachbare Bestrahlung jeder Mikroumgebung ermöglicht und damit Photobleichung und photooxidativen Stress kontrollierbar macht und ohne Einschränkung der Versuchsdurchführung verringert. Dafür sollen MikroLEDs und in Glas geprägte Mikrooptiken angepasst an die spezifischen Bedingungen der Mikronäpfchen in einem hochintegrierten Package kombiniert werden. Für die Mikrooptiken wird ein laserunterstütztes Prägeverfahren untersucht, das eine automatisierte Erzeugung z.B. von anwendungsspezifischen Mikrolinsenarrays auf Wafer-Level ermöglicht.Jahr: 2024Förderung: BMBFLaufzeit: 2024 - 2026
-
ProKIProKI ist ein Demonstrations- und Transfernetzwerk für den Einsatz von Künstlicher Intelligenz (KI) in der Produktion. Es wird vom Bundesministerium für Bildung und Forschung gefördert. Das Ziel besteht darin insbesondere kleine und mittelständische Unternehmen bei der Einführung von KI in der Produktion zu unterstützen. Dazu werden neben diversen Schulungen und Workshops zum Thema KI auch Demonstratoren entwickelt. Das IMPT unterstützt durch den Demonstrator „Mobile Datenakquise“. Dabei handelt es sich um einen mobilen Messaufbau, der die Auswertung von bspw. nachgerüsteter Dehnungs- und Beschleunigungssensorik oder die Auswertung vorhandener, interner Steuerungsdaten von KMU-spezifischen Anlagen ermöglicht. Aufbauend auf den Daten werden die Herausforderungen und Potentiale zum Einsatz von KI im jeweiligen Unternehmen erarbeitet.Jahr: 2022Förderung: BMBFLaufzeit: 2022 - 2024
-
PolygrindZiel des Projektes "PolyGrind" ist die Entwicklung einer selbstschärfenden Schleifscheibe mit Vernetzungsmatrizen aus Polyimid bzw. Epoxidharz mit integrierten Kühlkanälen. Dabei werden Schichten mit Kornanteilen von ~17,5 m% aufgebracht, bei denen das Korn beim Abstumpfen freigesetzt wird. Die hohe Vernetzungsgüte wird durch die Mikrostrukturierung mit UV-Licht im Bereich von 365 nm erzielt. Die Fluidkanäle mit Durchmessern von etwa 100 µm werden zunächst simulativ und anschließend in einer Gussform generiert. Ziel ist eine präzise Applikation der Kühlmittel. Der Fertigungsprozess und die UV-Strukturierung wird zunächst an 100 mm Durchmesser-Polyimidscheiben entwickelt und anschließend auf einen Gussprozess für 200 und 400 mm Schleifscheiben mit Schichtdicken von 200 und 250 µm ausgelegt. Aufgrund der festen Vernetzung in der harten Matrix wird ein G-Verhältnis > 1 im Prozess erzielt. Es können bei Vorschüben von ~400 mm/min Ribletstrukturen mit Aspektverhältnis von 0,4 erzielt werden und bei Vorschüben von ~600 mm/min plane Oberflächen mit Ra = 0,1.Jahr: 2022Förderung: ZIM -Zentrales Innovationsprogramm MittelstandLaufzeit: 2022 - 2024
-
Magdat IIIm Rahmen von Industrie 4.0 und der damit einhergehenden Digitalisierung der Fertigung ist das Interesse nach geeigneten Datenspeichern auf Bauteilen gefragter denn je, um Produkte automatisch erfassen und verarbeiten zu können. Das Forschungsprojekt konzentriert sich auf die Weiterentwicklung von magnetischen thermischen Spritzschichten (z.B. WCCo) als Medium für die Datenspeicherung. Diese Schichten bieten vor allem in rauen Umgebungsbedingungen der Bauteile eine besonders widerstandsfähige Alternative im Vergleich zu herkömmlichen Datenspeicherlösungen wie RFID-Chips. Das Hauptziel des Projektes ist die Optimierung der magnetischen Eigenschaften der Schichten durch die Variation relevanter Prozessparameter. Zusätzlich wird der Einfluss von magnetischen Feldern auf die Gefügeausbildung der Spritzschichten ermittelt, wofür die Prozesskammer mit einem eigens dafür ausgelegten Elektromagneten erweitert wird. Die optimierten Schichtsysteme werden im Anschluss auf ihre erreichbare Datenstabilität und -dichte analysiert. Hierfür wird ein maßgeschneiderter Magnetkopf ausgelegt und konstruiert, um effizientes Schreiben und Lesen der Daten auf den Schichten sicherzustellen. Ein weiteres Projektziel ist die Entwicklung eines Schichtsystems, das für die perpendikulare Datenaufzeichnung geeignet ist und die Applizierung einer weichmagnetischen Schicht unter dem eigentlichen Datenspeicher erfordert.Jahr: 2021Förderung: DFGLaufzeit: 2021 - 2024
-
InnoVaQDie Entwicklung von alltagstauglichen Quantensensoren erfordert einen hohen Miniaturisierungs- und Integrationsgrad des Vakuumsystems. In dem Forschungsprojekt InnoVaQ (Innovative Vakuumtechnologie für Quantensensoren) werden Technologien entwickelt, die es gemeinsam erlauben einen hochkompakten Ultrahochvakuum-Aufbau für einen auf Strontium-Atomen basierenden Quantensensor zu realisieren. Die zunehmende Miniaturisierung im Bereich der Quantensensorik führt langfristig nicht nur zu einer Verkleinerung des Gehäuses, sondern bedingt auch eine Vakuumperipherie in der entsprechenden Größenordnung. Somit wird eine miniaturisierte Pumptechnik benötigt, um kompakte und transportable Quantenmesstechnik zu entwickeln. Hierbei entwickelt das IMPT in Kooperation mit LPKF® ein kombiniertes Gerät, das von dem Funktionsprinzip her einer Ionengetterpumpe ähnelt. Als Kernkomponente dient ein magnetfreier Feldemitter-Ansatz, der die Messungen des Quantensystems nicht beeinflusst. Für die technische Umsetzung des Emitters werden zwei Ansätze verfolgt, zum einen ein Silizium basierter Ansatz (IMPT) und zum anderen ein Glas basierter Ansatz, der mithilfe der LIDE-Technologie gefertigt wird (LPKF®). Die durch das IMPT zu realisierende Pumptechnik beruht auf mikrotechnologisch hergestellten Feldemittern in Form von Spitzen, die mittels eines Trennschleifprozesses gefertigt werden. Diese Technologie wurde von der Leibniz Universität Hannover patentiert und ermöglicht die Herstellung hoch integrierbarer Emitterspitzen, die als Elektronenquellen für die Ionisation in miniaturisierten Ionengetterpumpen fungieren. Wichtig ist, dass in dem entwickelten Vakuumsystem der Druck im Bereich des Ultrahochvakuums (UVH) bei 10-8 bis 10-11 mbar liegt. Für das Erreichen dieses Druckes wird eine Kombination von Vorpumpen und Hochvakuumpumpen benötigt, da ein einstufiges Pumpen von Atmosphärendruck bis ins UHV nicht möglich ist. Nach Erreichen des Zieldrucks soll die in diesem Vorhaben entwickelte miniaturisierte Vakuumpumpe in der Lage sein, den Druck aufrechtzuerhalten und zu messen.Jahr: 2022Förderung: Bundesministerium für Bildung und ForschungLaufzeit: 01.01.2022-31.12.2024
-
ISiG – Integrierte Sensorik für intelligente GroßwälzlagerIm Kontext der Digitalisierung spielt die Erfassung von Messdaten im Einsatz von Großbauteilen eine zentrale Rolle. Für Wälzlager ist das Applizieren von herkömmlichen Sensoren aufgrund der Abmessungen bisher in Situ kaum möglich ist, sodass das Projekt „ISiG“ den Einsatz verschiedener, maßgeschneiderter Dünnfilmsensoren adressiert. Diese werden mithilfe von Beschichtungsverfahren direkt auf dem Maschinenelement hergestellt und somit bauteilinhärent integriert werden. In Kooperation mit dem Institut für Maschinenkonstruktion und Tribologie (IMKT) erfolgt dabei zunächst die Simulation der auftretenden mechanischen Belastungen und die daraus abzuleitende Auslegung der Sensorknoten. Die hohe Flächenpressung, der Schlupf und der Verschleiß stellen höchste Anforderungen an die Sensorik, weshalb der Aufbau redundanter Sensorsysteme durch eine intelligente Sensordatenfusion ein übergeordnetes Ziel darstellt.Jahr: 2021Förderung: DFGLaufzeit: 2021-2024
-
ENDEMAR (Energieersparnis durch Einsatz multipler autarker Regelsensorik)Intelligenter Energiefluss - Verbrauchsreduzierung durch neuartige wartungsfreie Sensoren in Gebäuden und Quartieren Das Ziel des vom Deutschen Bundesministerium für Wirtschaft und Energie geförderten Verbundforschungsprojekt besteht in einer intelligenten Steuerung von Energieverbrauchern in insbesondere Produktions- und Lagerhallen. Das Prinzip wird mit LED-Beleuchtungsquellen demonstriert und ist offen für weitere Verbraucher, z.B. Klimaanlagen und Heizungen. Die Regelung stützt sich dabei erstmals auf intelligente, wartungsfreie, autarke Sensorik mit passiver und aktiver Steuerfunktion mit extrem geringem Energieverbrauch. Projektbeteiligt sind drei Industrieunternehmen und drei Forschungseinrichtungen. Das IMPT unterstützt bei der Entwicklung eines geeigneten energieoptimierten Energyharvesters für die Energieversorgung eines autarken, wartungsfreien Bedienelements.Leitung: Folke DenckerJahr: 2021Förderung: Deutsches Bundesministerium für Wirtschaft und KlimaschutzLaufzeit: 2021-2024
-
QGyro+ (Entwicklung einer kompakten Experimentalplattform eines gyrostabilisierten Quantennavigationssensors)In dem Forschungsprojekt QGyro+ sollen hochgenaue Quanteninertialsensoren zur Stützung konventioneller Inertialnavigationssensoren entwickelt und getestet werden. Hochgenaue und nicht manipulierbare Navigationssysteme, die auch verwendet werden können, wenn her-kömmliches GPS nicht zur Verfügung steht, sind insbesondere für Luft-, Raum- und Schiff-fahrt sowie autonomes Fahren wichtig. Das zentrale Ziel des Vorhabens ist es, einen Sechs-Achsen Quanteninertialnavigationssensor zu entwickeln. Mit diesem Gerät sollen driftfreie und hochgenaue Quanteninertialsensoren erstmals für den Einsatz in der autonomen Naviga-tion getestet werden, um den Weg zu neuen Anwendungsfeldern zu eröffnen. Dieser Sensor soll im Projektverlauf als kompakte Experimentalplattform aufgebaut und eingesetzt werden (QINS-Experimentalplattform). Das IMPT übernimmt dabei eine Schlüsselrolle, indem es die Miniaturisierung diverser Systemkomponenten vorantreibt. Zur Erhöhung des Integrations-grads kommen sogenannte Atomchips, als Bestandteil der magneto-optischen Falle, mit er-weiterten Spiegelreferenzflächen zum Einsatz, die am IMPT entwickelt und gefertigt werden. Darüber hinaus forscht das IMPT an verschiedensten Technologien, um insbesondere das erforderliche Ultrahochvakuumsystem und die zugehörige Vakuumperipherie zu miniaturisie-ren. Ein vielversprechender Ansatz zur Aufrechterhaltung des Ultrahochvakuums (UHV) ist dabei das aktive Pumpen des Systems sowie die entsprechende Druckmessung mithilfe von mikrotechnisch gefertigten, magnetfeldfreien Ionengetterpumpen auf Basis von Feldemit-terarrays. Die am IMPT entwickelten Feldemitterarrays bestehen dabei aus hunderttausenden nanoskaligen Feldemittern mit jeweils konzentrischen Extraktionselektroden. Diese Elektro-nenquellen stellen freie Elektronen zur effizienten Restgasionisation zur Verfügung, sodass die ionisierten Restgasatome anschließend an einem funktionalisierten Ionenkollektor gebun-den werden können. In Kombination mit neuentwickelten Vakuumkammerkonzepten soll da-mit langfristig die Vision einer UHV-Mikrokammer mit integrierter Pump- und Messtechnik und Atomchiptechnologie realisiert werden.Leitung: Alexander Kassner, M.Sc.Jahr: 2021Förderung: DLRLaufzeit: 01.01.2021 - 01.03.2026
-
Quantum Valley Lower SaxonyDas übergeordnete Ziel des QVLS besteht in dem Aufbau eines Quantencomputers mit 50 Qubit. Das IMPT ist Teil dieses exzellenten Forschungsnetzwerks mit Zugang zu einzigartiger Infrastruktur des gesamten Konsortiums. Das Team ist sowohl national als auch international hervorragend vernetzt und nimmt (neben QVLS-Q1) an wichtigen Kollaborationen, einschließlich des Exzellenzcluster „QuantumFrontiers“ teil. Das IMPT ist Teil mehrerer Teams. In QVLS T2.4 befassen wir uns aufbauend auf unserer Expertise im Bereich der Atomchip-Fertigung mit der Entwicklung und dem Aufbau eines Atomchips mit der Möglichkeit, ein Glasgehäuse auf der Oberfläche des Atomchips aufzubringen und diesen zu kapseln. In diesem Zuge evaluieren wir die Fügetechniken hinsichtlich der Hermetizität. In einer neuartigen Implementierung dieser Atomchips mit einer Gitter-basierten magneto-optischen Falle soll ferner die Integration eines optischen Gitters in die Atomchip-Oberfläche erfolgen. In QVLS T3.1 entwickeln wir Prozesse und Methoden, um einen Ionenfallen-Chip mitsamt der dazugehörigen Quantenkontrollkomponenten (CMOS-Elektronikchip, aktiver photonischer Chip, passiver optischer Interposer) zu verbinden. Das schließt alle Verbindungen zur Außenwelt (Kabel, Fasern) mit ein. Diese Ionenfallen-Packaging-Lösung wird auf Techniken der 3D-Hybridintegration basieren, um das Stapeln und Bonden von Dies aus Keramik-, Glas- und Siliziumsubstraten auf Waferebene zu ermöglichen. In QVLS T3.3 befasssen wir uns im Zuge der Miniaturisierung des Vakuumsystems und der für den Betrieb des Quantensensors notwendigen Peripherie mit der Evaluierung des Fügens von Glas auf Titan sowie dem Fügen von Komponenten unter UHV-Bedingungen (themo-kompressiv und anodisch). Ferner sind wir an der Entwicklung einer Pumptechnik beteiligt, die zunächst auf Basis von nicht verdampfbaren Gettermaterialien (NEG) ausgeführt werden soll. Weiterhin entwickeln und charakterisieren wir eine Plattform für chip-basierte Atomquellen für die Nutzung in Quantensensoren.Jahr: 2021Förderung: VolkswagenStiftung & Niedersächsisches Ministerium für Wissenschaft und KulturLaufzeit: 2021 - 2025
-
Kraftsensitive Führungssysteme auf Basis direktabgeschiedener bauteilindividueller SensorikIn den Werkzeugmaschinen der modernen Produktionstechnik stellen Kräfte eine wichtige Informationsquelle zur Prozess- und Zustandsüberwachung dar. So lassen sich mit einer Überwachung der auftretenden Prozesskräfte Werkzeugbrüche und Prozessfehler erkennen sowie Werkzeugabdrängung und Werkzeugverschleiß abschätzen. Am Beispiel einer Portalfräsmaschine kommen in diesem Projekt aufgrund der hohen Anforderungen an die notwendigen Sensoren neuartige, direktabgeschiedene Dehnungsmessstreifen (DMS) zum Einsatz. Die Herstellung geschieht dabei direkt auf den Führungswagen (siehe Abbildung), mit deren Hilfe der Fräskopf in allen drei Raumrichtungen auf Linearprofilschienen bewegt wird. Dabei entstehen besonders dünne und sensitive Sensoren, die die Kräfte und Momente hochgenau aufnehmen können. Durch Methoden zur Simulation der optimalen Sensorpositionen und Sensordatenfusion wird das volle Potenzial der Technologie ausgeschöpft.Jahr: 2021Förderung: DFGLaufzeit: 2021 - 2024© Bosch-Rexroth
-
Gallium Nitride for Advanced Power (GaN4AP)Das Projekt GaN for Advanced Power (GaN4AP) ist ein internationales Kooperationsprojekt, das durch die EU-Initiative ECSEL gefördert wird. Weltweit wächst die Anzahl an Hybrid- und Elektroautos stetig. Damit einhergehend wird auch eine größere Anzahl an Hochleistungselektronik in der Ladetechnik benötigt. Um den steigenden Anforderung gerecht zu werden, soll in diesem Projekt mit Partnern aus Italien, Tschechien, Frankreich und Deutschland Hochleistungstransformatoren auf Galiumnitridbasis realisiert werden. Das IMPT beteiligt sich am Projekt durch die Herstellung von Transformatoren und Induktivitäten in Planartechnik auf Printed Circuit Boards (PCBs) und Molded Interconnect Devices (MIDs). Diese sind zum Ansteuern und Filtern des elektrischen Signals essenziell. Durch die planare Struktur ist es möglich den Forderungen zur Miniaturisierung von elektrischen Systemen und gleichzeitiger Leistungssteigerung gerecht zu werden.Leitung: Folke DenckerJahr: 2021Förderung: ECSEL (EU)Laufzeit: 2021 - 2024
-
SFB 1368 C03 – Untersuchung tribologischer Systeme für Werkzeugbeschichtungen in inerter AtmosphäreIm Sonderforschungsbereich 1368 „Sauerstofffreie Produktion“ werden Vorgänge und Mechanismen in den Prozessen der Fertigungstechnik untersucht, die unter sauerstofffreier Atmosphäre durchgeführt werden. Das IMPT erforscht dabei im Teilprojekt C03 den Einfluss der Atmosphäre auf tribologische Systeme für die spätere Entwicklung von Werkzeugbeschichtungen in inerter Atmosphäre. Wichtige Aspekte sind dabei unter anderem die Identifizierung und Quantifizierung grundlegender Zusammenhänge der Verschleißvorgänge in silan-dotierter Atmosphäre, Diffusions- und Adhäsionseffekte und die Untersuchung möglicher neuartiger Legierungsbildungen an den Grenzflächen.Jahr: 2020Förderung: DFGLaufzeit: 2020 - 2027
-
TiefZieh IIDas IMPT entwickelt verschiedene anwendungsspezifische Sensorlösungen. Beispielsweise fördert das „Zentrale Innovationsprogramm Mittelstand (ZIM)” das Folgeprojekt „Tiefziehsensorik: Entwicklung eines robusten induktiven Mikrosensors”. Hier wird in Zusammenarbeit mit den zwei Firmen GDH Metallverarbeitungs GmbH und KIMA Process Control GmbH an der Weiterentwicklung von induktiver Tiefziehsensorik mit Transformatorprinzip zur Qualitätsüberwachung von Ziehteilen geforscht. Zunächst wurde ein neues Sensorkonzept auf Basis einer FEM-Analyse zur Kontrolle der Qualität der tiefgezogenen Teile sowie Verringerung des Sensorverschleißes während des Prozesses entwickelt. Die Komplexität der Geometrie der Tiefziehteile erfordert dabei einen simultanen Einsatz mehrerer Sensoren. Deren Sensorsignal ergibt sich aus der Position der Tiefziehblechkante über dem planaren Sensor. Derzeit sind die Sensoren bis 100 °C temperaturbeständig und ermöglichen es, verschiedene Metalle sowie Schadensfälle (Riss- oder Faltenbildung) zu erkennen, um zur Reduzierung der Ausschussquote sowie zur Erhöhung der Prozessqualität regulierend eingreifen zu können.Jahr: 2022Förderung: AiF Projekt GmbH - ZIMLaufzeit: 2022 - 2024
-
PhoenixDDas Exzellenzcluster PhoenixD beschäftigt sich mit der Thematik optische Präzisionsgeräte schnell und kostengünstig mittels additiver Fertigung zu realisieren. Diese Vision vereint Forschende aus den Fakultäten Maschinenbau, Physik, Elektrotechnik Informatik und Chemie der Leibniz Universität Hannover und der TU-Braunschweig. Die Forschenden arbeiten gemeinsam an der Simulation, Herstellung und Anwendung optischer Systeme. Die zurzeit auf Glas basierenden Systeme sind aufwendig, meist per Hand, hergestellt und benötigen teilweise große Bauräume. Die Zusammenarbeit der unterschiedlichen Fachbereiche soll nun ein digitales Fertigungssystem erarbeiten mit denen individualisierte optische Produkte realisiert werden können.Jahr: 2019Förderung: DFGLaufzeit: 2019 - 2025
-
Quantum FrontiersDer Exzellenzcluster QuantumFrontiers vereint die Forschungsstärken der Leibniz Universität Hannover, der TU Braunschweig und der Physikalisch-Technischen Bundesanstalt in Braunschweig mit dem Ziel der Entwicklung von neuen Messkonzepten und Sensortopologien, die auf photonischen Systemen, dedizierten Halbleitersystemen, Nanostrukturen, quanten-manipulierten atomaren und molekularen Ensembles, und sogar makroskopischen Objekten basieren. Das IMPT konzentriert sich dabei schwerpunktmäßig auf die Atominterferometrie und ist mit zwei Arbeitsgruppen involviert.Jahr: 2019Förderung: DFGLaufzeit: 2019 - 2025
-
QCHIPAm IMPT werden sogenannte Atomchips als Bestandteil von magneto-optischen Fallen für kompakte Materiewelleninterferometer entwickelt. In Kombination mit einer aufwendigen Laserkühlung erzeugen diese Atom Chips Magnetfeldkonfigurationen, um Atome unter Ausnutzung des Zeeman Effekts zu fangen und zu kühlen. Dies stellt den ersten Schritt zur Erzeugung eines Bose-Einstein-Kondensats dar, welches als Testmasse für die Interferometrie dient. Um solche hochpräzisen Materiewelleninterferometer im Feld oder an Bord von Satelliten nutzen zu können, soll die Miniaturisierung weiter vorangetrieben werden. Die Anzahl der für die Kühlung notwendigen Laser und Elektronik kann reduziert werden, indem die Oberflächen der Atomchips mit optischen Gittern strukturiert werden. Durch die geschickte Ausnutzung von Beugungseffekten kann somit der Betrieb mit nur einem Laser erfolgen.Jahr: 2019Förderung: BMWKLaufzeit: 2019 - 2026
-
KACTUS IIInnerhalb des ersten Verbundprojekts KACTUS konnte am IMPT in Zusammenarbeit mit dem Institut für Quantenoptik (IQ) und der Humboldt Universität Berlin (HUB) eine neue Generation Atomchips entwickelt werden, welche sich durch geeignetere Materialien und bessere Fügeprozesse auszeichnen, sodass diese neue Atomchipgeneration sich durch schnelleres Schaltverhalten und bessere Vakuumeigenschaften auszeichnen. Basierend auf dieser neuartigen Plattform sollen im Rahmen von KACTUS II den Atomchips weiterführende Funktionen hinzugefügt werden, welche neben der weitergehenden Miniaturisierung auch eine drastische Reduktion der Komplexität des Gesamtaufbaus zur Folge haben werden. Hierbei steht die Untersuchung neuer Chipmaterialien, die Einbringung mehrerer stromführender Lagen pro Chip und die Verbesserung der optischen Qualität der Spiegelschicht für interferometrische Anwendungen im Vordergrund.Jahr: 2019Förderung: BMWKLaufzeit: 2019 - 2024